Discrete Neumann boundary value problem for a nonlinear equation with singular ϕ-Laplacian

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Discrete Neumann boundary value problem for a nonlinear equation with singular φ-Laplacian

which is a discrete analogue of the Neumann problem about the rotationally symmetric spacelike graphs with a prescribed mean curvature function in some Friedmann-Lemaître-Robertson-Walker (FLRW) spacetimes, whereψ (s) := ∫ s 0 dt g(t) ,ψ –1 is the inverse function ofψ , and H :R× [2,N – 1]Z →R is continuous with respect to the first variable. The proofs of the main results are based upon the Br...

متن کامل

Nonexistence and existence results for a 2$n$th-order $p$-Laplacian discrete Neumann boundary value problem

This paper is concerned with a 2nth-order p-Laplacian difference equation. By using the critical point method, we establish various sets of sufficient conditions for the nonexistence and existence of solutions for Neumann boundary value problem and give some new results. Results obtained successfully generalize and complement the existing ones.

متن کامل

nonexistence and existence results for a 2$n$th-order $p$-laplacian discrete neumann boundary value problem

this paper is concerned with a 2nth-order p-laplacian difference equation. by using the critical point method, we establish various sets of sufficient conditions for the nonexistence and existence of solutions for neumann boundary value problem and give some new results. results obtained successfully generalize and complement the existing ones.

متن کامل

Existence and multiplicity of solutions for discrete Neumann-Steklov problems with singular φ-Laplacian

is a forward difference operator with uk = u(tk), uk = u(tk+) – u(tk), tN = T and ∇ is a backward difference operator with ∇uk = u(tk) – u(tk–), t = , f : [,T]×R → R is continuous. In addition, the nonlinear difference equations play an important role inmany fields such as biology, engineering, science and technology where discrete phenomena abound, meanwhile, from the advent and rise of ...

متن کامل

Existence of positive solutions for a boundary value problem of a nonlinear fractional differential equation

This paper presents conditions for the existence and multiplicity of positive solutions for a boundary value problem of a nonlinear fractional differential equation. We show that it has at least one or two positive solutions. The main tool is Krasnosel'skii fixed point theorem on cone and fixed point index theory.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Advances in Difference Equations

سال: 2018

ISSN: 1687-1847

DOI: 10.1186/s13662-017-1462-1